FIS-100 と他社画像センサの比較

FIS-100	他社画像センサ
基本的な考え方	
・汎用性が高い「良品の画像と比較」が中心	・さまざまな画像処理ツールを駆使して、対象
・外観検査で最も簡単で確実な方法	物ごと、欠陥ごとにアプローチする方法
・「OK」を定義して「OK」を選別する	・「NG」を定義して「NG」を選別する
導入コスト	
・ソフトウェアが標準化(開発費負担ゼロ)さ	・ソフトウェアとハードウェアがパッケージ化
れているためローコスト	(開発費負担ゼロ) されているためローコスト
・ハードウェアは様々なものが選択可能	・ハードウェアは指定のものしか使えないた
・ピンポン方式の場合、人が供給、排出をおこ	め、選択によっては割高になる
なうため「ハンドリング不要」ですぐに検査の	・自動化には画像センサとセットで「ハンドリ
目の自動化を導入できる。ハンドリング不要な	ング」が必要となり、初期投資費用は割高にな
ため初期投資費用はローコスト	る
不足機能の追加	
・標準機能化の場合、無償対応	・原則無し
・特殊性が高い場合、有償対応	
・HALCON ライブラリを使用	
画像から欠陥の抽出	
・たくさんの良品を統計処理することにより、	・オペレータの感覚により二値化レベルを決定
良品の範囲(二値化レベル)を決定	・設定した範囲ごとに二値化レベルを持ち、立
・1 画素ごとに二値化レベルを持つため、輝度	体に対応するためには範囲を小さく分ける必要
勾配をもつ立体に対応可能	がある
抽出された欠陥の評価	
・まず欠陥の濃さを評価し、見にくい薄い欠陥	・面積などの形状特徴により評価
を無視する	・感度を上げると薄くて大きい過剰欠陥が生
・ある程度の濃さを持った欠陥に対して、面積	じ、これを回避しようとすると明瞭な小さい欠
などの形状特徴により評価	陥も検出できなくなる
日々の運用における調整	
・過検出品の追加登録 (統計処理)	・二値化レベル、面積などのパラメータの微調
・追加登録で結果は大きく変わらない。100個	整 (オペレータの感覚)
目の追加登録なら 1/100 の影響しかない	・パラメータの微調整に手間がかかる

・パラメータの変更にて結果が大きく変わる